
© 2018 IJRAR July 2018, Volume 5, Issue 3                                    www.ijrar.org  (E-ISSN 2348-1269, P- ISSN 2349-5138) 
 

IJRAR1903007 International Journal of Research and Analytical Reviews (IJRAR) www.ijrar.org 40 
 

BOUNDS ON METRIC DIMENSION 
1
K. Renganathan, 

2
R. Srinivasan, 

3
 M. Arockia Ranjithkumar 

1
Department of Mathematics, SSM College of Engineering and Technology, Dindigul, India. 

2
Department of Science and Humanities, DMI-St.Eugene University, Chibombo, Zambia. 

3
Department of Ancient Science, Tamil University, Thanjavur, Tamilnadu, India 

 

Abstract: In this paper, we present some bounds for metric dimension of a graph G in terms of order and some 
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achieving the bounds. 
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1. INTRODUCTION 

For any graph theoretic parameter, the study of determining bounds is the important one. Chartrand et. 

al [4] determined the bounds of the metric dimensions for any connected graphs and determine the metric 

dimension of some well known families of graphs such as paths and complete graphs. In [10], Khuller et. al 

considered graphs with small metric dimension and showed that a graph has metric dimension 1 if and only if it 

is a path and Chartrand et. al also proved this in [6]. Buczkowski et. al [1] proved the existence of a graph G 

with ( ) 2G  , for every integer 2k  . In this paper, we present some bounds for metric dimension of a graph 

G in terms of order and some theoretic parameters such as diameter and maximum degree etc., 

1.1. Some Bounds for Metric dimension 

In this section, we determine some bounds for metric dimension and characterize the graph with metric 

dimension land n - 1. Also we characterize the extremal graphs achieving the bounds.  

Theorem 1. 1. 1. If G is a graph on n vertices, then  1     —  1G n  . For given integer a and n 

with1  a  —  1n  , there exists a graph G of order n such that   =aG . 

Proof:The inequalities are trivial.   Now suppose a and n are two integers with 1  a  —  1n  . We construct a 

graph G of order n such that   =aG as follows.  

Case 1. a = 1, 2, n- I, n- 2 

For a = 1, 2, n — 1, n - 2, let G be a graph with n vertices be taken as a path, cycle, complete graph and 

complete bipartite graph respectively. Then clearly   =aG . 

Case 2.   3  3a n   andn - a is odd. 
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In this case, let G be a graph obtained from the cycle 
1 1 2 1 13  3 ( , ,.... , )n a n aa n C v v v v       by attaching 

(a - 1) pendent edges at any one of the vertices of the cycle say 1v and let 
1 2 1, ,.... ax x x 

 be the pendent vertices 

of G. We now claim that   =aG . 

Let 
1 2 2 2 1( , ,.... , , )a n aS x x x v v   . It can be easily verified that S is a resolving set of G. So that 

( )G S a   .Next we have to show that   aG  . For that , we have to prove the following Claim 1. 

Claim 1. Every resolving set of G contains at least a - 2 vertices from the set
1 2 1{ , ,.... }aX x x x  . 

Suppose not, then there exists a resolving set of G contains at most a - 3 vertices say W1and so 

1 2X W  , However, if 
1,i jx x X W  , then d(x , ) ( , ), ( )i jv d x v v V G   . Hence no vertex of W1resolves xi 

and xj , a contradiction. This complete the proof of Claim 1. 

Use the fact ( ) 2nC   and Claim 1 we have   a-2+2G  and hence   G a  . 

Case 3:3 a n 3   and n - a is even. 

Here also let G be the graph obtained from the cycle 
1 1 2 1 1( , ,.... , )n a n aC v v v v    by attaching (a- 1) 

pendent edges at any one of the vertices of the cycle say v}and attach one pendent edge at any other vertices of 

the cycle say v1. Let 
1 2 1, ,.... ax x x 

be the pendent vertices of G, where xais incident with the pendent edge which 

is  attached to  v2.   We  now  claim  that    G a  .  

Let
1 2 2( , ,.... , , )a a n aS x x x x v  . Then it can be easily verified that S is a resolving set of G and so 

  G S a   . Next we have to prove that   G a  . For that, first we prove the following Claim 2. 

Claim 2. Every resolving set of G contains at least 2 vertices from the set { }n a aT C x  . 

Assume to the contrary, then there exists a resolving set of G contains at most one vertex from T say 

W2. Note that if viand vj are two distinct vertices of Cn-awith 
1 1d(v , ) ( , )i jv d v v then ' 'd(v , ) ( , )i jv d v v for 

all ' ( ) { }n a av V G C x   , it follows that W2must contain exactly one vertex in T. We consider the following 

four cases. 

Case (i). 
2ax W . 

Since for any ' ( ) { }n a av V G C x   , 'd(v , ) ( , )n a a ax d v x  and ' ' 'd(v , ) ( , )n a u d v u  for any 

' '( ) { } { }n a au V G C x v    it follows that '

2 2( \ ) ( \ )n ar v W r v W  . 

Case (ii). Any one of 
1 2 /2 1{ , ,.... }nv v v 

belongs to W2. 

Since for any ' '( ) { } { }n a av V G C x v    , '( , ) ( , )n a i id v v d v v  ,1 / 2 1i n   and ' ' '( , ) ( , )n ad v u d v u  for all 

' ( ) { } { }n a i au V G C v x    , we have '

2 2( \ ) ( \ )n ar v W r v W  . 

Case (iii).
/2 2nv W  
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Note that if v and v' are two distinct vertices of Cn-awith  

'

1 1( , ) ( , )d v v d v v then '

/2 /2( , ) ( , )n nd v v d v v and d(v, u) = d(v', u) for all ( ) { }n a au V G C x  and so 

'

2 2 2( \ ) ( \ )r v W r v W  

Case (iv). Any one of 
/2{ 1,...., }n n av v   belongs to W2. 

Since for any ' '

2( ) { }, ( , ) ( , )n a a i iv V G C x d v v d v v    , / 2 1n i n a    and ' ' '

2( , ) ( , )d v u d v u for all 

' ( ) { } { }n a i au V G C v x    We have '

2 2 2( \ ) ( \ )r v W r v W . 

In each case, W2is not a resolving set of G, a contradiction. 

Therefore, every resolving set of G contains at least two vertices 

from the set T. From Claim 1 and Claim 2   G a  and hence 

  G a  . 

Illustration (i). If n = 10 and a = 5, then the required graph G is given Figure 1.1.1. This is actually 

discussed in Case 2. One can verify that   5G  . 

Illustration(ii). If n = 12 and a = 4, then the required graph G is given in Figure 1.1.2. This is actually 

discussed in Case 3. One can easily verify that   4G  . 

In the Theorems 1.1.2. and 1.1.3., we characterize the extremal graphs achieving the bounds given in 

Theorem 1.1.1.  

 

Figure 1.1.1 
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Figure 1.1.2 
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Theorem 1. 1. 2. A connected graph G of order n has metricdimension 1 if and 

only if 
nG P . 

Proof: Let G be a graph with   1G  . We have to prove that G is apath.  

Let W = { w } be a minimum resolving set for G. For each vertex 

( ), ( / ) ( , )v V G r v W d v w  is a non negative integer less than n. Since 

the codes of the vertices of G with respect to W are distinct, there 

exists a vertex u of G such that d(u, w) = n — 1. Consequently, the 

diameter of G is n - 1. This implies that 
nG P .For the converse, let 

G be a path on n vertices. By Proposition 1.1.1,   1G  . 

Theorem 1.1.3. Let G connected graph of order 2n  . Then   1G n   if and 

only if 
nG K . 

Proof: Let G be a graph with   1G n   . We will show that 
nG K . Suppose 

not. Then G contains two vertices u and v with d(u, v) = 2. Let u, x, v be a path of 

length 2 in G and let W = V(G) - {x, v}. Since  

d(u, v) = 2 and d(u, x) = 1, it follows that r ( x \W) = r( v \W) and so W is a 

resolving set. Which is contradiction to the fact that   1G n   . For the 

converse, assume that 
nG K . By Proposition 1.1.12.   1G n   . □ 

In the following theorem we determine some bounds for the metric 

dimension of a graph in terms of maximum degree and diameter. 

Theorem 1.1.4. Let G be a nontrivial connected graph of order 2n  , 

diameter d(G), and maximum degree ( )G . Then 

3[log ( ( ) 1)] ( ) ( )G G n d G      . 

Proof: First, we establish the upper bound. Let u and v be vertices of G for which 

d(u, v) = d(G) and let 
0 1 2 ( ), , ,.... d Gu v v v v v  be a shortest u-vpath.  

Let W = V(G)- { 
1 2, ,....v v v }. Sinceu W and ( , )id u v i  

for 1 ( )i d G  , it follows that W is a resolving set of cardinality n - d(G) for G. 

Thus ( ) ( )G n d G   . 
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Next, we consider the lower bound. Let ( )G k  and let 

( )v V G with degv   . Moreover, let N(v) be the neighbourhood of 

v and let
1 2{ , ,..... }kW w w w be a resolving set of G. Observe that 

if u e N(v), then for each 1 i k  , the distance ( , )id u w is one of 

the numbers ( , ), ( , ) 1i id v w d v w  or ( , ) 1id v w  . Moreover, sinceWis 

a resolving set, r(u \ W)= r(v \ W) for all ( )u N v . Thus there are three 

possible number for each of the k coordinates of r(u \ W). On the otherhand, since 

it cannot occur that d(u,wi) = d(v,wi) for all i 

(1 i k  ), it follows that there at most 3
k
 - 1 distinct codes of the 

vertices in N(v) with respect to W. Therefore, ( ) 3 1kN v     , 

which implies that   3 log ( ( ) 1).G k G     Since /?(G) is an 

integer,   3 log ( ( ) 1)G G    . 

1.2. Graphs with  = n-2  

This section completely characterizes the family of graphs of order n for 

which the metric dimension n-2. 

Theorem 1.2.1. Let G be a connected graph of order 4n  . Then  = n-2 if and 

only if , ( , 1),s t s tG K s t G K K    , ( 1, 2),s t   G=K ( )( , 1)s l tor K K s t    

Proof:It can be easily show that ( ) n-2G  for each of the graphs mentioned in 

the statement of the theorem. To see  ( ) n-2G  , note that if the vertices of a 

graph are partitioned as 
1 2 ..... pV V V   where either Viis independent and its 

vertices have identical open neighborhoods or Viinduces a clique and its vertices 

have identical closed neighborhoods, then the metric dimension is at least 

     1 21 1 ....... 1pV V V     . Since each of the graphs mentioned in the 

statement of the theorem are partition as 
1 2V V ,then the metric dimension is at 

least    1 21 1V V   . Therefore ( ) n-2G  and hence ( ) n-2G  . 

For the converse, assume that G is a connected graph of order 4n  such 

that ( ) n-2G  . By Theorem 1.1.4. and, it follows that G has diameter 2. If G is 

bipartite and since the diameter of G is 2,
,s tG K for some integers s, t > 1. 
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Hence, we may assume that G is not bipartite. Therefore, G contains an odd cycle. 

Let Cr be a smallest odd cycle in G. We claim that r = 3. Certainly, Cris an 

induced cycle of G. If G contains an induced &-cycle v}, v2,..., vk, where k >5, then 

W = V(G) - {\>2>vj, v4} is a resolving set of cardinality n - 3, for if we let wi = V] 

and w2 = v5, then r(v2 \ W) = (1, s, . . . ), r(v3 \ W) = (2, 2, ... ) and r(v4 \ W) = (t, 1, . . 

.) where s, t > 2. Hence, p (G) < n - 3, which is a contradiction. Thus G has no 

induced cycle of length k > 5 and so r = 3 and G contains a triangle. 

Let Y be the vertex set of a maximum clique of G. Since G contains a 

triangle, \ Y \ > 3. Let U ~ V(G) - Y. Since G is not complete, \ U \ > 1. If \ U \ = 1, 

then G = Ks + (K}KJKJfor some integers s and t. Now, s > 1 since G is connected 

and t >1 since G is not complete. From these observations, we may assume that 

\U\> 2. 

First, we show that t/is an independent set of vertices. Suppose, to the 

contrary, that U is not independent. Then U contains two adjacent vertices u and 

w. Because of the defining property of Y, there exists v e Y such that uv t E(G) and 

v' e Y such that wv' g E(G), where v and v' are not necessarily distinct. We 

consider the following two cases. 

Case 1. There exists a vertex v e Y such that uv, wvg E(G). 

The following two cases are to be discussed. 

Subcase 1.1. There exists a vertex x e 7that is adjacent to exactly one of u and w, 

say u. 

(b) 

Since | Y \ > 3, there exists a vertex y e Y that is distinct from v and x. Thus 

G contains the subgraph shown in Figure 1.2.1 (a), where dotted lines indicate that 

the given edge is not present. 

Let W = V(G) - {u, w, yj. Letting w; = v and w2 = xtwe have 

r(u\W) = (2,1 , . . . ) ,  

r(w\W) = (2,2,...), 

r(y\W) = (1 ,1 , . . . ) .  So Wis a resolving set of cardinality n - 3, which is a 

contradiction. 

Subcase 1.2. Every vertex of Fis adjacent to either both u and w or to 

neitheru nor w. 
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If u and ware adjacent to every vertex in Y - {v}, then the vertices of (F- 

{v}) u {u, w} are pair wise adjacent, contradicting the defining property of Y. Thus, 

there exists a vertex v e Y such that y is distinct from v, and y is adjacent to neither 

u nor w. 

Since the diameter of G is 2, there is a vertex x of G that is adjacent to both 

u and v. Thus G contains the subgraph shown in Figure 3.2.1 (b), where dotted 

lines indicate that the given edges are not in G. 

Let W - V(G) - {x, y, w} and label wt— v and w2— u. Then 

r(x\W) = (1,1,...), 

r(y\W) = (1,2,...), 

r(w\W) = (2,1 , . . . ) .  

Thus   W is a resolving set of cardinality n - 3,  producing a contradiction. 

Case 2. For each vertex v of Y, v is adjacent to at least one of u and w. 

Because Y is the vertex set of a maximum clique, there exist vertices v, v' e 

Y such that uv, wv' e E(G). Necessarily, vw, v'ue E(G). Since | Y \ > 3, there exists 

a vertex y in Y distinct from v and v'. Now, at least one of the edges yuand ywmust 

be present in G, say yu. Thus, G contains the subgraph shown in Figure 3.2.2 (a) 

where again dotted edges indicate that the given edge is not in G. 

Let W = V(G) - {u, w, y}and label in wj= v and w2 = v'. Then 

r(u|W) = (2, l , . . . ) , r(w\W) = (1,2,...),r(y\W) = ( 1 , 1 , . . . ) .  

Again, W is a resolving set of cardinality n — 3, which is a contradiction. Thus, as 

claimed, U is independent. 
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Next, we claim that N(u) = N(w) for all u, w e U. Let u and w be two vertices of U. Suppose that 

uv e E(G) for some vertex v of G. Necessarily, v e Y. We show that wve E(G). Assume, to the 

contrary, that wv€ E(G). Since G is connected and U is independent, w is adjacent to some vertex 

of Y. If w is adjacent only to y, then since wand y are not adjacent to u, d(w, u) = 3, which 

contradicts the fact that the diameter of G is 2. Thus there exists a vertex x in 7 distinct from y 

such that wxe E(G). Therefore, G contains the subgraph shown in Figure 3.2.2 (b), where again 

dotted edges are not in G. 

Let W = V(G) - {u, w, x} and label wj = v and w2 = y. Then 

r(u\W) = (l,2,.,.), 

r(w\W) = (2,...), 

r(x\W) = (l,l,...). 

Thus,   W is  a resolving  set of cardinality  n - 3, producing a 

contradiction. 

 

 

 

 

 

Figure. 1.2.3. 
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z N(u) = N(w). Thus G contains the subgraph shown in Figure 1.2.3., where dotted edges are 

not edges of G. 
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r(w\ W) = ( 2 , 2 , . . . ) ,  
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r(z\W) = (1 ,1 , . . . ) .  

Hence, W is a resolving set of cardinality n - 3, producing a contradiction. 

Now, N(u)=Y  For  N(u)=Y-{v} for some v   7. If N(u) = Y, then G=KS+ Ktfor 

s = \ Y \  3 a n d t = \ U \   2. If N(u) = Y- {v}, then  
ts KKKG  1

,  

where V(K1) = {v}, S = | Y | - 1   2, and T = | U |  2.  

However,  
ts KKK  1

= Ks + 1t
K . In either case, G is the join of a complete graph and an 

empty graph. 
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