BOUNDS ON METRIC DIMENSION

${ }^{1}$ K. Renganathan, ${ }^{2}$ R. Srinivasan, ${ }^{3}$ M. Arockia Ranjithkumar
${ }^{1}$ Department of Mathematics, SSM College of Engineering and Technology, Dindigul, India.
${ }^{2}$ Department of Science and Humanities, DMI-St.Eugene University, Chibombo, Zambia.
${ }^{3}$ Department of Ancient Science, Tamil University, Thanjavur, Tamilnadu, India

Abstract

In this paper, we present some bounds for metric dimension of a graph G in terms of order and some theoretic parameters such as diameter and maximum degree etc., Also, we characterize the Extremal graphs achieving the bounds.

Keywords: Metric bounds, Distance partition, Metric dimension, Extremal graph

1. INTRODUCTION

For any graph theoretic parameter, the study of determining bounds is the important one. Chartrand et. al [4] determined the bounds of the metric dimensions for any connected graphs and determine the metric dimension of some well known families of graphs such as paths and complete graphs. In [10], Khuller et. al considered graphs with small metric dimension and showed that a graph has metric dimension 1 if and only if it is a path and Chartrand et. al also proved this in [6]. Buczkowski et. al [1] proved the existence of a graph G with $\beta(G)=2$, for every integer $k \geq 2$. In this paper, we present some bounds for metric dimension of a graph G in terms of order and some theoretic parameters such as diameter and maximum degree etc.,

1.1. Some Bounds for Metric dimension

In this section, we determine some bounds for metric dimension and characterize the graph with metric dimension land $n-1$. Also we characterize the extremal graphs achieving the bounds.

Theorem 1. 1. 1. If G is a graph on n vertices, then $1 \leq \beta(G) \leq n-1$. For given integer a and n with $1 \leq \mathrm{a} \leq n-1$, there exists a graph G of order n such that $\beta(G)=\mathrm{a}$.

Proof:The inequalities are trivial. Now suppose a and n are two integers with $1 \leq \mathrm{a} \leq n-1$. We construct a graph G of order n such that $\beta(G)=\mathrm{a}$ as follows.

Case 1. $a=1,2, n-I, n-2$
For $a=1,2, n-1, n-2$, let G be a graph with n vertices be taken as a path, cycle, complete graph and complete bipartite graph respectively. Then clearly $\beta(G)=\mathrm{a}$.

Case 2. $3 \leq a \leq n-3$ and $n-a$ is odd.

In this case, let G be a graph obtained from the cycle $3 \leq a \leq n-3 C_{n-a+1}=\left(v_{1}, v_{2}, \ldots v_{n-a+1}, v_{1}\right)$ by attaching ($a-1$) pendent edges at any one of the vertices of the cycle say v_{1} and let $x_{1}, x_{2}, \ldots x_{a-1}$ be the pendent vertices of G. We now claim that $\beta(G)=\mathrm{a}$.

Let $S=\left(x_{1}, x_{2}, \ldots x_{a-2}, v_{2}, v_{n-a+1}\right)$. It can be easily verified that S is a resolving set of G. So that $\beta(G) \leq|S=a|$. Next we have to show that $\beta(G) \geq \mathrm{a}$. For that, we have to prove the following Claim 1.

Claim 1. Every resolving set of G contains at least $a-2$ vertices from the set $X=\left\{x_{1}, x_{2}, \ldots . x_{a-1}\right\}$.
Suppose not, then there exists a resolving set of G contains at most $a-3$ vertices say W_{l} and so $\left|X-W_{1}\right| \geq 2$, However, if $x_{i}, x_{j} \in X-W_{1}$, then $\mathrm{d}\left(\mathrm{x}_{i}, v\right)=d\left(x_{j}, v\right), \forall v \in V(G)$. Hence no vertex of W_{l} resolves x_{i} and x_{j}, a contradiction. This complete the proof of Claim 1.

Use the fact $\beta\left(C_{n}\right)=2$ and Claim 1 we have $\beta(G) \geq \mathrm{a}-2+2$ and hence $\beta(G)=a$.
Case 3: $3 \leq \mathrm{a} \leq \mathrm{n}-3$ and $n-a$ is even.
Here also let G be the graph obtained from the cycle $C_{n-a+1}=\left(v_{1}, v_{2}, \ldots . v_{n-a+1}, v_{1}\right)$ by attaching (a-1) pendent edges at any one of the vertices of the cycle say v jand attach one pendent edge at any other vertices of the cycle say v_{1}. Let $x_{1}, x_{2}, \ldots . x_{a-1}$ be the pendent vertices of G, where x_{a} is incident with the pendent edge which is attached to v_{2}. We now claim that $\beta(G)=a$.

Let $S=\left(x_{1}, x_{2}, \ldots x_{a-2}, x_{a}, v_{n-a}\right)$. Then it can be easily verified that S is a resolving set of G and so $\beta(G) \leq|S|=a$. Next we have to prove that $\beta(G) \geq a$. For that, first we prove the following Claim 2.

Claim 2. Every resolving set of G contains at least 2 vertices from the set $T=C_{n-a} \cup\left\{x_{a}\right\}$.
Assume to the contrary, then there exists a resolving set of G contains at most one vertex from T say W_{2}. Note that if v_{i} and v_{j} are two distinct vertices of C_{n-a} with $\mathrm{d}\left(\mathrm{v}_{i}, v_{1}\right)=d\left(v_{j}, v_{1}\right)$ then $\mathrm{d}\left(\mathrm{v}_{i}, v^{\prime}\right)=d\left(v_{j}, v^{\prime}\right)$ for all $v^{\prime} \in V(G)-C_{n-a} \cup\left\{x_{a}\right\}$, it follows that W_{2} must contain exactly one vertex in T. We consider the following four cases.

Case (i). $x_{a} \in W_{2}$.
Since for any $v^{\prime} \in V(G)-C_{n-a} \cup\left\{x_{a}\right\}, \quad \mathrm{d}\left(\mathrm{v}_{n-a}, x_{a}\right)=d\left(v^{\prime}, x_{a}\right)$ and $\quad \mathrm{d}\left(\mathrm{v}_{n-a}, u^{\prime}\right)=d\left(v^{\prime}, u^{\prime}\right)$ for \quad any $u^{\prime} \in V(G)-C_{n-a} \cup\left\{x_{a}\right\} \cup\left\{v^{\prime}\right\}$ it follows that $r\left(v_{n-a} \backslash W_{2}\right)=r\left(v^{\prime} \backslash W_{2}\right)$.

Case (ii). Any one of $\left\{v_{1}, v_{2}, \ldots . v_{n / 2-1}\right\}$ belongs to W_{2}.
Since for any $v^{\prime} \in V(G)-C_{n-a} \cup\left\{x_{a}\right\} \cup\left\{v^{\prime}\right\}, d\left(v_{n-a}, v_{i}\right)=d\left(v^{\prime}, v_{i}\right), 1 \leq i \leq n / 2-1$ and $d\left(v_{n-a}, u^{\prime}\right)=d\left(v^{\prime}, u^{\prime}\right)$ for all $u^{\prime} \in V(G)-C_{n-a} \cup\left\{v_{i}\right\} \cup\left\{x_{a}\right\}$, we have $r\left(v_{n-a} \backslash W_{2}\right)=r\left(v^{\prime} \backslash W_{2}\right)$.

Case (iii). $v_{n / 2} \in W_{2}$

Note that if v and v^{\prime} are two distinct vertices of $\mathrm{C}_{\mathrm{n}-a}$ with
$d\left(v, v_{1}\right)=d\left(v^{\prime}, v_{1}\right)$ then $d\left(v, v_{n / 2}\right)=d\left(v^{\prime}, v_{n / 2}\right)$ and $d(v, u)=d\left(v^{\prime}, u\right)$ for all $u \in V(G)-C_{n-a}\left\{x_{a}\right\}$ and so $r\left(v_{2} \backslash W_{2}\right)=r\left(v^{\prime} \backslash W_{2}\right)$

Case (iv). Any one of $\left\{v_{n / 2}+1, \ldots ., v_{n-a}\right\}$ belongs to W_{2}.
Since for any $v^{\prime} \in V(G)-C_{n-a} \cup\left\{x_{a}\right\}, d\left(v_{2}, v_{i}\right)=d\left(v^{\prime}, v_{i}\right), n / 2+1 \leq i \leq n-a$ and $d\left(v_{2}, u^{\prime}\right)=d\left(v^{\prime}, u^{\prime}\right)$ for all $u^{\prime} \in V(G)-C_{n-a} \cup\left\{v_{i}\right\} \cup\left\{x_{a}\right\}$ We have $r\left(v_{2} \backslash W_{2}\right)=r\left(v^{\prime} \backslash W_{2}\right)$.

In each case, W_{2} is not a resolving set of G, a contradiction. Therefore, every resolving set of G contains at least two vertices from the set T. From Claim 1 and Claim $2 \quad \beta(G) \geq a$ and hence $\beta(G)=a$.

Illustration (i). If $n=10$ and $a=5$, then the required graph G is given Figure 1.1.1. This is actually discussed in Case 2 . One can verify that $\beta(G)=5$.

Illustration(ii). If $n=12$ and $a=4$, then the required graph G is given in Figure 1.1.2. This is actually discussed in Case 3 . One can easily verify that $\beta(G)=4$.

In the Theorems 1.1.2 and 1.1.3., we characterize the extremal graphs achieving the bounds given in Theorem 1.1.1.

Figure 1.1.1

v_{6}
$-\mathrm{v}_{5}$

Figure 1.1.: v_{4}

Theorem 1. 1.2. A connected graph G of order n has metricdimension 1 if and only if $G \cong P_{n}$.

Proof: Let G be a graph with $\beta(G)=1$. We have to prove that G is apath.
Let $W=\{w\}$ be a minimum resolving set for G . For each vertex $v \in V(G), r(v / W)=d(v, w)$ is a non negative integer less than n . Since the codes of the vertices of G with respect to W are distinct, there exists a vertex u of G such that $d(u, w)=n-1$. Consequently, the diameter of G is $n-1$. This implies that $G \cong P_{n}$. For the converse, let G be a path on n vertices. By Proposition 1.1.1, $\beta(G)=1$.

Theorem 1.1.3. Let G connected graph of order $n \geq 2$. Then $\beta(G)=n-1$ if and only if $G \cong K_{n}$.

Proof: Let G be a graph with $\beta(G)=n-1$. We will show that $G \cong K_{n}$. Suppose not. Then G contains two vertices u and v with $d(u, v)=2$. Let u, x, v be a path of length 2 in G and let $W=V(G)-\{x, v\}$. Since
$d(u, v)=2$ and $d(u, x)=1$, it follows that $r(x \backslash W)=r(v \backslash W)$ and so W is a resolving set. Which is contradiction to the fact that $\beta(G)=n-1$. For the converse, assume that $G \cong K_{n}$. By Proposition 1.1.12. $\beta(G)=n-1$.

In the following theorem we determine some bounds for the metric dimension of a graph in terms of maximum degree and diameter.

Theorem 1.1.4. Let G be a nontrivial connected graph of order $n \geq 2$, diameter $d(G)$, and maximum degree $\Delta(G)$. Then
$\left[\log _{3}(\Delta(G)+1)\right] \leq \beta(G) \leq n-d(G)$.
Proof: First, we establish the upper bound. Let u and v be vertices of G for which $d(u, v)=d(G)$ and let $u=v_{0}, v_{1}, v_{2}, \ldots . v_{d(G)}=v$ be a shortest u - v path.

Let $W=V(G)-\left\{v_{1}, v_{2}, \ldots . v\right\}$. Since $u \in W$ and $d\left(u, v_{i}\right)=i$
for $1 \leq i \leq d(G)$, it follows that W is a resolving set of cardinality $n-d(G)$ for G.
Thus $\beta(G) \leq n-d(G)$.

Next, we consider the lower bound. Let $\beta(G)=k$ and let $v \in V(G)$ with $\operatorname{deg} v=\Delta$. Moreover, let $\mathrm{N}(\mathrm{v})$ be the neighbourhood of v and let $W=\left\{w_{1}, w_{2}, \ldots . . w_{k}\right\}$ be a resolving set of G. Observe that if $u \quad e N(v)$, then for each $1 \leq i \leq k$, the distance $d\left(u, w_{i}\right)$ is one of the numbers $d\left(v, w_{i}\right), d\left(v, w_{i}\right)+1$ or $d\left(v, w_{i}\right)-1$. Moreover, sinceWis a resolving set, $r(u \backslash W)=r(v \backslash W)$ for all $u \in N(v)$. Thus there are three possible number for each of the k coordinates of $r(u \backslash W)$. On the otherhand, since it cannot occur that $d\left(u, w_{i}\right)=d\left(v, w_{i}\right)$ for all i $(1 \leq i \leq k)$, it follows that there at most $3^{k}-1$ distinct codes of the vertices in $N(v)$ with respect to W. Therefore, $|N(v)|=\Delta \leq 3^{k}-1$, which implies that $\beta(G)=k \geq \log _{3}(\Delta(G)+1)$. Since $\quad / ?(G) \quad$ is an integer, $\beta(G) \geq \log _{3}(\Delta(G)+1)$.

1.2. Graphs with $\beta=\mathrm{n}-2$

This section completely characterizes the family of graphs of order n for which the metric dimension $n-2$.

Theorem 1.2.1. Let G be a connected graph of order $n \geq 4$. Then $\beta=\mathrm{n}-2$ if and only if $G=K_{s, t}(s, t \geq 1), G=K_{s}+\bar{K}_{t},(s \geq 1, t \geq 2)$, or $\mathrm{G}=\mathrm{K}_{s}+\left(K_{l} \cup K_{t}\right)(s, t \geq 1)$

Proof:It can be easily show that $\beta(G) \leq \mathrm{n}-2$ for each of the graphs mentioned in the statement of the theorem. To see $\beta(G) \geq \mathrm{n}-2$, note that if the vertices of a graph are partitioned as $V_{1} \cup V_{2} \cup \ldots \ldots \cup V_{p}$ where either V_{i} is independent and its vertices have identical open neighborhoods or V_{i} induces a clique and its vertices have identical closed neighborhoods, then the metric dimension is at least $\left(\left|V_{1}\right|-1\right)+\left(\left|V_{2}-1\right|\right) \ldots \ldots .+\left(\left|V_{p}\right|-1\right)$. Since each of the graphs mentioned in the statement of the theorem are partition as $V_{1} \cup V_{2}$, then the metric dimension is at least $\left(\left|V_{1}\right|-1\right)+\left(\left|V_{2}-1\right|\right)$. Therefore $\beta(G) \geq \mathrm{n}-2$ and hence $\beta(G)=\mathrm{n}-2$.

For the converse, assume that G is a connected graph of order $n \geq 4$ such that $\beta(G)=\mathrm{n}-2$. By Theorem 1.1.4. and, it follows that G has diameter 2. If G is bipartite and since the diameter of G is $2, G=K_{s, t}$ for some integers $s, t>1$.

Hence, we may assume that G is not bipartite. Therefore, G contains an odd cycle. Let C_{r} be a smallest odd cycle in G. We claim that $r=3$. Certainly, C_{r} is an induced cycle of G. If G contains an induced \&-cycle $v_{j}, v_{2}, \ldots, v_{k}$, where $k>5$, then $\left.W=V(G)-\wedge>2>\mathrm{vj}, v_{4}\right\}$ is a resolving set of cardinality $n-3$, for if we let $\left.w i=V\right]$ and $w_{2}=v_{5}$, then $r\left(v_{2} \backslash W\right)=(1, s, \ldots), r\left(v_{3} \backslash W\right)=(2,2, \ldots)$ and $r\left(v_{4} \backslash W\right)=(t, 1, \ldots$.) where $s, t>2$. Hence, $p(G)<n-3$, which is a contradiction. Thus G has no induced cycle of length $k>5$ and so $r=3$ and G contains a triangle.

Let Y be the vertex set of a maximum clique of G. Since G contains a triangle, $\backslash Y \backslash>3$. Let $U \sim V(G)-Y$. Since G is not complete, $\backslash U \backslash>1$. If $\backslash U \backslash=1$, then $G=K_{s}+\left(K_{j} K J K J\right.$ for some integers s and t. Now, $s>1$ since G is connected and $\mathrm{t}>1$ since G is not complete. From these observations, we may assume that $\backslash U>2$.

First, we show that $t /$ is an independent set of vertices. Suppose, to the contrary, that U is not independent. Then U contains two adjacent vertices u and w. Because of the defining property of Y, there exists ve Y such that $u v t E(G)$ and v^{\prime} e Y such that $w v^{\prime} \mathrm{g} E(G)$, where v and v^{\prime} are not necessarily distinct. We consider the following two cases.

Case 1. There exists a vertex $v e Y$ such that $u v, w v g E(G)$.
The following two cases are to be discussed.
Subcase 1.1. There exists a vertex x e 7that is adjacent to exactly one of u and w, say u.

Since $\mid Y \backslash>3$, there exists a vertex ye Y that is distinct from v and x. Thus G contains the subgraph shown in Figure 1.2.1 (a), where dotted lines indicate that the given edge is not present.
Let $W=V(G)-\left\{u, w, y j\right.$. Letting $\mathrm{w} ;=\mathrm{v}$ and $w_{2}=x_{t} \mathrm{we}$ have
$r(u \backslash W)=(2,1, \ldots)$,
$r(w \backslash W)=(2,2, \ldots)$,
$r(y \backslash W)=(1,1, \ldots)$. So Wis a resolving set of cardinality $n-3$, which is a contradiction.

Subcase 1.2. Every vertex of Fis adjacent to either both u and w or to neither u nor w.

If u and ware adjacent to every vertex in $Y-\{v\}$, then the vertices of (F$\{v\}) \mathrm{u}\{u, w\}$ are pair wise adjacent, contradicting the defining property of Y. Thus, there exists a vertex ve Y such that y is distinct from v , and y is adjacent to neither u nor w.

Since the diameter of G is 2 , there is a vertex x of G that is adjacent to both u and v. Thus G contains the subgraph shown in Figure 3.2.1 (b), where dotted lines indicate that the given edges are not in G.

Let $W-V(G)-\{x, y, w\}$ and label $w_{t}-v$ and $w_{2}-u$. Then
$r(x \backslash W)=(1,1, \ldots)$,
$r(y \backslash W)=(1,2, \ldots)$,
$r(w \backslash W)=(2,1, \ldots)$.
Thus W is a resolving set of cardinality $n-3$, producing a contradiction.
Case 2. For each vertex v of Y, v is adjacent to at least one of u and w.
Because Y is the vertex set of a maximum clique, there exist vertices v, v' e Y such that $u v, w v^{\prime} e E(G)$. Necessarily, $v w, v^{\prime} u$ e $E(G)$. Since $\mid Y \backslash>3$, there exists a vertex y in Y distinct from v and v^{\prime}. Now, at least one of the edges $y u a n d y w$ must be present in G, say $y u$. Thus, G contains the subgraph shown in Figure 3.2.2 (a) where again dotted edges indicate that the given edge is not in G.

Let $W=V(G)-\{u, w, y\}$ and label in $w j=\mathrm{v}$ and $\mathrm{w}_{2}=\mathrm{v}^{\prime}$. Then
$r(u \mid W)=(2, l, \ldots), r(w \backslash W)=(1,2, \ldots), r(y \backslash W)=(1, l, \ldots)$.
Again, W is a resolving set of cardinality $n-3$, which is a contradiction. Thus, as claimed, U is independent.

(a)
(b)

Next, we claim that $N(u)=N(w)$ for all u, w e U. Let u and w be two vertices of U. Suppose that uv e $E(G)$ for some vertex v of G. Necessarily, ve Y. We show that wve $E(G)$. Assume, to the contrary, that $w v € E(G)$. Since G is connected and U is independent, w is adjacent to some vertex of Y. If w is adjacent only to y, then since w and y are not adjacent to $u, d(w, u)=3$, which contradicts the fact that the diameter of G is 2 . Thus there exists a vertex x in 7 distinct from y such that $w x$ e $E(G)$. Therefore, G contains the subgraph shown in Figure 3.2.2 (b), where again dotted edges are not in G.

Let $W=V(G)-\{u, w, x\}$ and label $w j=\mathrm{v}$ and $w_{2}=y$. Then
$r(u \backslash W)=(l, 2, \ldots),$.
$r(w \backslash W)=(2, \ldots)$,
$r(x \backslash W)=(l, l, \ldots)$.
Thus, W is a resolving set of cardinality $n-3$, producing a contradiction.

Therefore $V(G)=Y \cup U$, where Y induces a clique, U is independent, $\backslash Y \backslash \geq 3, \backslash U \backslash \geq 2$, and $N(u)=N(w)$ for all $u, w \in U$.

Next, we claim that for $u € \mathrm{U}$, there is at most one vertex of Y not contained in $N(u)$. Suppose, to the contrary, that there are two vertices $x, y \in Y$ not in $N(u)$. Let W be a vertex of U that is distinct from u. Therefore, $N(w)=N(u)$. Since G is connected, there exists $z \in 7$ such that $\mathrm{z} \in \mathrm{N}(\mathrm{u})=N(w)$. Thus G contains the subgraph shown in Figure 1.2.3., where dotted edges are not edges of G.

Let $W=V(G)-\{y, w, z\}$ and label $w j=x$ and $w_{2}=u$. Then
$r(y \backslash W)=(1,2, \ldots)$,
$r(w \backslash W)=(2,2, \ldots)$,
$r(z \backslash W)=(1, l, \ldots)$.
Hence, W is a resolving set of cardinality $n-3$, producing a contradiction.
Now, $N(u)=$ Y For $N(u)=Y-\{v\}$ for some $\mathrm{v} \in 7$. If $N(u)=Y$, then $G=K_{S}+K_{t}$ for $s=\backslash Y \backslash \geq 3$ and $t=\backslash U \backslash \geq 2$. If $N(u)=Y-\{v\}$, then $G=K_{s}+\left(K_{1} \cup K_{\bar{t}}\right)$,
where $\mathrm{V}\left(\mathrm{K}_{1}\right)=\{\mathrm{v}\}, \mathrm{S}=|\mathrm{Y}|-1 \geq 2$, and $\mathrm{T}=|U| \geq 2$.
However, $K_{s}+\left(K_{1} \cup K_{\bar{t}}\right)=\mathrm{K}_{\mathrm{s}}+K_{\overline{t+1}}$. In either case, G is the join of a complete graph and an empty graph.

REFERENCES

[1] F. Buckley andF. Harary, Distance in graphs, Addison - Wesley (1990).
[2] Christopher Poisson and Ping Zhang. The metric dimension of unicyclicgraphs. J.Combin.
Math. Combin. Comput., 40:17-32, 2002.
[3] F. Harary, Graph theory, Narosa/Addison Wesley (1969).
[4] F. HararyandR.A. Melter, On the metric dimension of a graph, ArsCombinatoria2 (1976), 191-195.
[5] Hartsfield Gerhard, Ringel, Pearls in Graph Theory, Academic press, USA (1994).
[6] Jose Cáceres, Carmen Hernando, Merce Mora, Ignacio M. Pelayo, Marìa.Puertas, Carlos
Seara and David R. Wood, On the metric dimension of Cartesian product of graphs, arXiv: math.CO/0507527 v3 2 Mar 2006.
[7] Paul F. Tsuchiya, The landmark hierarchy; A new hierarchy for routing in very Large networks, ACM 0-89791-279-9/88/008/0035, 1988, page 35-42.
[8] Samir Khuller, BalajiRaghavachari, and Azriel Rosenfeld. Landmarks in graphs. Discrete Appl. Math., 70(3):217-229, 1996.
[9] Shanmukha B, Certain applications of number theory in graphs with emphases to networks. PhD. Thesis, 2003.
[10] Shanmukha B, Sooryanarayana B andHarinath K.S, Metric dimension of Wheels, FEJ. Appl. Math., 8(3)(2002), 217-229.
[11] Sooryanarayana B and Shanmukha B, A note on metric dimension, FEJ. Appl. Math., 5(3),(2001), 331-339.
[12]Sooryanarayana B, Certain combinatorial connections between groups, graphs and surfaces,

PhD Thesis, 1998.
[13] Sooryanarayana B, On the metric dimension of a graph, Indian. J. Pure Appl.Math 29(4),(1998), 413 - 415[2].
[14] Sooryanarayana B, K.S. Harinath and R.Murali, Some results on metric dimension of graph of diameter two,(communicated).
[15]Sudhakara.G and Hemanthkumar, Graphs with Metric Dimension Two-A Characterzation.World Academy of science, Engineering and Technology,60(2009).

